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This report presents results of numerical simulations of impact effects in monoblock and 
mulitlayered plates using both Lagrangian and Eulerian wave propagation codes. It is found that 
Lagrangian simulations compare favorably with experimental and analytical results. Eulerian 
codes, while ideal for large distortion situations such as penetration, have great difficulty in 
describing multiplate perforation due primarily to problems with the interface treatment in 
Eulerian codes. 

This report was originally presented as a paper at the Special Symposium Honoring the 70th 

Birthdays of Professors Jack Vinson and Charlie Bert, which was part of the 1999 ASME 
International Mechanical Engineering Congress and Exposition held in Nashville, TN, on 
14-19 November 1999. The paper has been accepted for publication in a special volume of The 
Journal on Solid and Structures. 
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1. Introduction 

Impact and impulsive loading onto layered media (targets consisting of different materials) 

is a long standing problem. It occurs naturally when dealing with impact effects in geological media 

where different strata have different material properties. It can occur in the design of protective 

structures where materials of different density, strength, and cross-sectional area are employed to 

reduce the intensity of the impact stress. Many examples can be found in the works of Rinehart [1] 

and Tedesco and Landis [2]. This aspect of the impact problem is well understood and covered in 

modern textbooks and reference books dealing with transient phenomena. 

One aspect of layering involves the impact of projectiles onto targets consisting of multiple 

layers of plates of the same density. In impact testing, this often occurs when very thick targets need 

to be constructed, yet the material is not manufactured in the required thickness. One example is the 

requirement to construct a "semi-infinite" target, one where the rear of the plate does not influence 

the penetration process. The total thickness can be made up by stacking identical layers of smaller 

thicknesses to reach the desired target thickness. This target stack is then contained in some fashion 

(e.g., strapped or welded at the periphery). The situation also arises in laboratory tests when 

measuring wave arrival times or pressures in situ. The method by which probes are inserted in the 

target can dramatically change wave propagation behavior. Netherwood [3], conducting in situ 

pressure measurements of impacted plates, found that multilayer targets are much weaker than solid 

ones of the same thickness; therefore, the mechanism of penetration was distinctly different for the 

two types of targets. Nixdorff [4] analytically examined the effect of lamination on the ballistic limit 

for up to five layers, and found considerable differences as the number of layers increased. Segletes 

and Zukas [5] and Zukas [6], in numerical studies of layered targets with Lagrangian codes, obtained 

similar results. 

Multilayer targets can be grouped into three classes: 

(a) thin targets (T/D < 1, where T = target thickness and D = projectile diameter) 

(b) intermediate thickness targets (3 < T/D < 10) 
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(c) thick targets (T/D > 10) 

Zaid, El-Kalai, and Travis [7], Eleiche, Abdel-Kader, and Almohandes [8], and Gupta and Madhu [9] 

(as well as the previously cited references) found that for thin targets, the multilayer plate is much 

weaker than the solid one of the same thickness. Other studies could be cited, but these studies 

suffice to show that for thin targets, lamination can alter the response mechanism under impact 

loading and fail to correlate with the behavior of a solid target, especially if the number of layers is 

large. 

For thick targets, correlation between impact effects in a solid target and one made of layers 

of identical material can be quite good, especially for T/D ratios that are very large. Care must be 

taken to insure that the target is sufficiently large in the radial direction so that boundary effects do 

not influence penetration phenomena [10]. 

The response of intermediate thickness targets can exhibit characteristics of both thin and 

thick target response, depending on T/D, material properties, striker geometry, and initial conditions. 

2. Intermediate Thickness Targets 

2.1 Lagrangian Calculations. The problem for intermediate thickness targets can be seen 

from the following calculations. The ZeuS code [5,11,12], a two-dimensional, Lagrangian explicit 

finite element code for fast, transient analysis on personal computers, was used to calculate the 

impact of a 64.5-g S-7 tool steel projectile with length-to-diameter (L/D) ratio of five into a single 

rolled homogeneous armor (RHA) plate with a thickness of 3.18 cm. The projectile had a diameter 

of 1.3 cm and a striking velocity of 1,164 m/s. Experimental data were taken from the report by 

Lambert [13]. The experimentally determined values of residual mass and residual velocity were 

22.9 grams and 223 m/s, respectively. ZeuS calculations indicated a residual mass of 25.5 g and a 

residual velocity of 233 m/s. These results were deemed acceptably close. Material properties for 

the calculations were taken from split-Hopkinson bar results published by Nicholas [14]. 



Next, a series of calculations was performed where the solid target was assumed to consist 

of two, four, and six layers, each with properties identical to those of the solid target. Figure 1 

shows penetration of the four-layer target at various times. The variation of projectile normalized 

residual mass (m, /TOQ) and normalized residual velocity (Vr /Vs, where Vs is the striking velocity) 

can be seen in Figures 2 and 3. With the four-layer target, the difference between Lambert's data for 

the solid target and the computed residual masses is 43%, while for the residual velocity it is 143%. 

The differences continue to increase with additional layering. 

Even though the plates in the multilayer target have the same density and material properties 

as the solid target, the differences noted could be anticipated. The plates in the multilayer target are 

not restrained; hence, they can slip freely over each other. As they separate, a free surface is created. 

The inability of a free surface to support rarefaction waves changes the stress wave propagation 

characteristics of multiplate penetration events at early times. As these stress variations are 

integrated in time, the difference between the simulations becomes more visible, with the multiplate 

case demonstrating more bending than the equivalent solid plate case (Fig. 4). This can also be 

inferred from plate theory, which gives for the bending stiffness of the plate D = ET3/12(l-u2), where 

E is the elastic modulus, T the plate thickness, and u Poisson's ratio. Since bending stiffness follows 

plate thickness to the third power, simply cutting a monoblock plate in half reduces its bending 

stiffness by a factor of eight. 

There is ho direct experimental evidence for the behavior of the layered plate. However, we 

can establish confidence in the validity of the Lagrangian calculations from the following 

considerations. First, the calculation for the residual mass and velocity of the monolithic plate agree 

closely with the experimental data of Lambert, cited previously. Second, Eleiche, Abdel-Kader, and 

Almohandes [8] present experimental data for impacts into steel and fiberglass-reinforced polyester 

(FRP) plates consisting of one to eight layers. Some target arrays consist of plates in direct contact, 

while others include air gaps ranging from one to three plate thicknesses. Their experiments were 

conducted with thinner plates (8 mm) than considered here, yet show the same trends; the 

normalized residual velocity ranged from 0.62 for a single plate perforation to 0.73 for perforation 

of a stack of eight plates, with a total thickness equivalent to that of the single plate.  Finally, 
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Figure 1. Perforation of a Laminated Plate. 
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Figure 4. Wave Propagation in Solid and Six Layer Target. 



Nixdorff [4], using penetration theories of Awerbuch and Bodner and Lambert and Jonas (both 

described in Chapter 5 of Zukas et al. [15]), analytically studied the variation in the ballistic limit 

with the number of plate layers, holding the total plate thickness constant. Nixdorff found that for 

targets that were subdivided into n layers of equal thickness "... the residual velocity has always 

turned out to be higher, the ballistic limit velocity has always turned out to be lower than for a 

monolithic target of the same total thickness. This becomes globally more apparent when the 

number n of subdivisions is raised while keeping the total thickness constant." 

2.2 Eulerian Calculations. The January 1998 version of the Eulerian CTH hydrocode [16] 

was used to model the previously discussed Lagrangian simulations. A series of four simulations 

was conducted corresponding to a single target plate and two, four, or six plate-layered targets with 

the same initial conditions as the Lagrangian simulations. All simulations used a mesh consisting 

of 480 x 800 cells with a one-to-one aspect ratio throughout. The size of the cells provided 20 cells 

across the radius of the penetrator. To model sliding between plates, a 0.01 cm gap was introduced 

between each plate. Additionally, mixed cells were not allowed to support tension. 

Figure 5 shows the predicted normalized residual mass as a function of the number of target 

layers. Because CTH only gives the mass for the individual materials as a global quantity including 

all material in the mesh, the mass of the residual penetrator had to be estimated. To estimate the 

residual mass a damage criterion was chosen (damage in the sense of the Johnson-Cook failure 

model [17] in which material with a damage of 1.0 is assumed fully failed and behaves as a fluid) 

in which all penetrator material with a damage of 0.99 or greater was assumed to no longer 

contribute to residual mass. Using this criterion, the Eulerian simulations overpredicted the 

experimentally determined residual mass for the single-plate target. Additionally, the Eulerian 

simulations show little sensitivity in predicted residual mass as a function of the number of target 

layers. The computed residual masses were 39.85 g, 40.57 g, 40.31 g, and 40.52 g for the one, two, 

four, and eight target-plate layers, respectively. 

Residual velocity was predicted to be relatively constant by CTH, at 840 m/s for the 

monolithic plate and 850 m/s for all layered plate configurations. The lack of sensitivity of the 
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results can be explained by the interface treatment used. Eulerian simulations are usually advanced 

in two distinct phases. In the Lagrangian phase, the mesh is allowed to distort and the simulation 

is advanced in time. In the advection phase, the distorted mesh is remapped back to the original 

mesh. The velocities in Eulerian codes are either defined at the cell faces (as in CTH) or at the cell 

corners (nodes), and all other flow-field variables are cell centered. The implication is that all 

materials within a mixed cell have the same velocity field, implying a no-slip condition. An attempt 

to overcome this shortcoming in the CTH code has been made by Walker and Anderson [18]. The 

authors defined a cell-centered velocity where each material within a mixed cell had its own velocity, 

which was advected with the material as a state variable. The authors attempted modeling a rigid 

body perforation with only limited success. 

When materials separate, free surfaces are created and stress pulses cannot cross these 

surfaces. In the Eulerian simulations, the plates were initially separated by 0.1 mm, but this was still 

less than the width of a single cell; therefore, the free surfaces were in mixed cells. As a result, 

compressive stress pulses could still pass over the free surfaces even when the individual plates were 

not in physical contact. For tensile stresses, void is inserted over several computational cycles to 

relax pressures and allow materials to separate. In the simulations presented here, mixed cells were 

not allowed to support tension; however, a tensile wave arriving at the interface between target plates 

will not act as a free surface, as relaxing the stresses by inserting void takes place over several 

computational cycles. 

Today, the simple failure models in hydrocodes are the single biggest limitation of code 

accuracy. The Lagrangian and Eulerian codes used in this study had different failure models. The 

effect of these on computational results has not been examined. Failure is modeled only in the 

grossest sense in both sets of calculations. In the Lagrangian simulations, failure was largely 

controlled through an ad hoc erosion algorithm in which elements are removed when they reach a 

user-defined value of equivalent plastic strain (erosion strain). Failure occurs at two levels. At a 

value of effective plastic strain of 0.40, the elements are no longer able to carry shear or tensile 

stresses. Only compression is permitted, so the material behaves much as a fluid. At a much higher 

value, typically between 1.2 -1.5 in most calculations, the material is assumed to have failed totally. 



Failed elements are removed from the calculation, the contact surfaces are redefined for each 

geometry, and the calculation proceeds. Since mass points associated with failed elements continue 

to be tracked, this procedure conserved mass and momentum exactly, but total energy only 

approximately. The Eulerian simulations used the emperical Johnson-Cook damage model with 

parameters chosen so that material would fail at an equivalent plastic strain of 0.40. 

Lagrangian codes provide a straightforward means of defining material interfaces but have 

problems treating large deformation. On the other hand, Eulerian codes readily treat severe 

deformation but have certain disadvantages modeling sliding and handling material properties within 

mixed cells. A potential solution is to use a finer mesh so that several empty cells (void cells) are 

between the individual plates. Problems, however, would still occur when the initially separated 

plates come into physical contact. 

3. Conclusions 

Layering dramatically weakens targets of thin and intermediate thickness. For very thin 

targets, even the mechanism of penetration may change, while thick targets show small changes in 

projectile residual properties when compared to their monoblock equivalents. 

Lagrangian calculations can do an excellent job of simulating monoblock and multiplate 

perforation if: (1) care is taken to determine material properties for the constitutive model from wave 

propagation experiments at appropriate strain rates, and (2) some reasonable estimate of material 

failure is used. Results of Euler code calculations are very sensitive to the material interface logic 

used in the code. Despite an appropriate constitutive model and parameters for that model obtained 

from wave propagation experiments, incorrect results may be obtained in relation to experiments 

depending on the material transport algorithm chosen. 
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